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Questions

Transcient?
H Recurrent?
Speed?
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Prior Results That Structure Our Bounds

Drift defined as § = M(2p — 1)

Theorem (Zerner '05)

transcience <— 0 > 1

Theorem (Basdevant and Singh '08)

positive speed v <— § > 2




Simulation of Speed

Simulation of the Speed of an ERW with 3 Equal Cookies
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Alternate form of Speed
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Hitting Time Fun!

m T, = n+2( number of total offspring of tree)
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Hitting Time Fun!

m T, = n+2( number of total offspring of tree)
s T,=n+2%.Z

m Now we take the limit!
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Strong Law-ish

m iMoo 5 2io Zi = Ex[Z0] = 2 k>0 km (k)
m Where
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Looks tractable!

Theorem (Basdevant and Singh ‘08)
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Truncation of Z,

Denoted Z(L)
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Transition Matrix
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Transition Matrix for Truncation

m j = L (the last column)



Upper Bound Using Truncation
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Probability Generating Functions




Recursive Formula (Basdevant & Singh)

-G (2 ! S) — a(s)(1 = G(s)) + b(s)

1
@—s)" 1By _1[s4]

" b(s) = 1~ oy

(2—$)M71EM_1[521] +

Ei[s%1] 1
Zk 0 ﬂ-( ) ((2*5)M’k1EM71[521] B (2—5)k)

ma(s) =




Recursive Formula (Basdevant & Singh)

-G (2 ! S) — a(s)(1 = G(s)) + b(s)

1
@—s)" 1By _1[s4]

" b(s) = 1~ oy

(2—S)M*1EM}1[SZI] +
Ex[s41] 1
Zk 0 ﬂ-( )((2 S)M’klEMfl[SZl] B (2—5)k)

= E[Z0] = 55

ma(s) =




b" (1) for M = 3 Cookies
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Speed Bounds for an ERW with 3 Equal Cookies
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Future Research

m Find an explicit equation for the speed

m Differentiability of the speed function
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